
The maximum reduction in resistance for the tube with artificial roughness reached 59% 
at a metaupone concentration C = 0.6% and Re = 6500, while for the naturally rough tube the 
maximum reduction was 68% at the same concentration and Re = 12,000. With further increase 
in velocity there is a quite sharp increase in friction coefficient, i.e., a decrease in 
the reduction of hydrodynamic resistance. This is evidently related to destruction of the 
mycelial structures of the surface-active substance in the Reynolds number range above the 
threshold value. 

It follows from the experimental studies performed that addition of polyacrylamide and 
metaupone decrease hydrodynamic resistance in turbulent flow of liquids in rough tubes: in 
practice the resistance reduction begins in the region of transition from laminar to turbul- 
ent flow: the resistance reduction in metaupone solutions is found over a limited range of 
change of Reynolds number, which range enlarges with increase in metaupone concentration. 
Comparison of the results obtained with experimental data for smooth tubes [i, 5] shows that 
to obtain the same resistance reduction effect a larger concentration of the additive is 
necessary in rough tubes. 

NOTATION 

d, inner diameter of tube; R, radius; s, screw pitch; k, height of roughness projection; 
bl, distance between projections; h, effective height of projections; ks, roughness value 
equivalent to sand roughness; l, length of tube section over which pressure drop was measured; 
%, friction resistance coefficient; Re, Reynolds number, calculated from solution viscosity; 
C, concentration of solute; Tw, threshold shear stress on tube wall; b, width of roughness 
projections. 
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A GENERALIZED HYDRAULIC RESISTANCE COEFFICIENT 

E. T. Abdinov and R. S. Gurbanov UDC 532.5:532.135 

A generalization of the resistance law for theologically stationary liquids is 
considered for flow in tubes and channels of various geometry. 

In hydrodynamic calculations the necessity often develops of determining hydraulic 
losses in motion of liquid in tubes and channels of various cross sections. 

The present study will consider the possibility of generalizing the resistance law for 
rheologically stationary liquids for flow in media of various geometries. 

It has been discovered [i] by processing of experimental data on the flow of various 
non-Newtonian systems that in the case of laminar flow, in the consistent variables chosen, 
rheometric data for media of various geometries form a single curve. According to Bingham, 
consistency is defined by complete relationships between force factors and flow character- 
istics. For the force factor the mean over the perimeter of the shear stress T w was chosen, 
while for the flow characteristic the mean velocity gradient Yw was selected. The quantity 
T w is determined from the equilibrium of pressure and friction forces acting on a certain 
volume of liquid, limited by two sections separated by a distance l, i.e., 
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whence 

APF : I [ r,,. (• ds = Ix 1 t .r,,. (• ds = xlT.., 

M ~t 

"q. : APRhq.  

The choice of the parameter Vw was based on the analogy between laminar flow of a 
liquid and the twisting of a prism of the same cross section (the Bousslnesq analogy). 
approximate formula for liquid flow rate then has the form 

From Eq. 
obtain 

Q = APF~/16a2Io I. 

(1) 

An 

(2) 
After elementary transformations, Eq. (2) becomes 

: (  4ai~ / 2 u u m  (3) 

(3), together with Newton's law, written in the consistent variables T w and Vw, we 

V.. = ( 4aio l Z Um = ~ Um 

\ • / "Rh - Rh (4) 

The geometric quantity ~ = (4~lo/x) = depends solely on the form of the cross section and is 
termed the form coefficient. The exact value of ~ may be determined by writing the formulas 
for flow rates for various cross sections in consistent variables. The values of 6 for 
media of various geometries are presented in [i]. 

Thus, a generalized relationship 

Tw = g~Um/R h (5) 

is obtained. 

Equation (5), which relates integral values (pressure drop and flow rate) for media of 
various geometries, can be considered as applicable to non-Newtonian liquids as well. How- 
ever, in the case of a non-Newtonlan liquid the quantity ~ does not remain constant, but is 
some function of the velocity gradient (shear stress). The form of the function ~ = f(#w ) 
is determined from the condition of best approx~matlon of the actual flow curves. It has 
been found by processing of experimental data that the generalized model of Shul'man [2] is 
the most reliable, describing the rheologlcal curves of non-Newtonian liquids over a quite 
wide range. In consistent variables the Shul'man model is written as 

From Eq. 

�9 l.m 

G ''~ = ~"" + (w~) (6) 

(6) and the Darcy-Weisbachite equation, written in the form 

I 
~=, = -~ Xpu~, (71 

we obtain 

~ '  R% I (i = ,,.,0. (s) 

If we employ the notation 

-~ $oRfi Re' Pum R~ = Re', - / 7 ,  = Re*, 
~iqi ~ i i i  q u m (1 -i-/-/l. ~). 

then from Eq. (8) we have 

~ = 8,Re*. (9) 

As follows from Eq. (9), for laminar flow of a non-Newtonian liquid the criterial equa- 
tion is written in the form k - f(Re', H), i.e., there are two similarity criteria: the 
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Fig. i. Hydraulic resistance coefficient versus modi- 
fied Reynolds number: i) authors' data on motion of 
nonlinear vlscoplastic liquids in round cylindrical 
tube, plane slit, and porous medium; 2) Newtonian liquid 
filtration data [i0, ii]; 3) data of Hedstrem, Metzner, 
and Reed for motion of Bingham and power liquids in 
round tube [3]. 

number Re', characterizing the effect of the structural viscosity, and the parameter K, char- 
acterizing the effect of plasticity. 

Equation (9) generalizes the resistance law of a large class of rheologlcally station- 
ary liquids, in particular, liquids following the Hesson model (m - n = 2), Balkly--Herschel 
model (n = i), Bingham--Shvedov model (m = n = i), Os~wald-de Ville model (To - 0), Newton 
model (To = 0, m = n), and others, independent of the geometry of the channel in which the 
liquid moves. Thus, e.g., for the case of laminar flow of a Newtonlan liquid (q = ~) in a 
round tube ({ = 2, R h = d/4), we obtain the well-known relationship 

l 8/[ pumRhl = 9u d 64 

. = R e  " | ~ 

It should be noted that Weltman, Metzner, and Reed [3, 4] previously developed universal 
methods for determining the hydraulic resistance coefficient, applicable to laminar flow of 
Newtonian and non-Newtonian liquids in a round tube. However, the generalization described 
above differs in its simplicity, and can be employed for tubes with different cross sections, 
and also for a porous medium. 

Generalization to a porous medium is possible by replacement of the hydraulic radius by 
the quantity ~. Such a substitution was used by Leibenzon, Minskii, and Antonio [5, 6, 7] 
and evaluated favorably in [8, 9]. In [8] various formulas for determination of I and Re in 
filtration of Newtonlan liquids were analyzed. In all the formulas (except that of Minskli) 
the linear measure used was either the effective diameter of the soll particle (a quantity 
which is difficult to determine and not always exact), or various combinations of the coef- 
ficients k and m,. 

The coefficient k is a more universal characteristic of a porous medium, since in lami- 
nar filtratlonlt considers the sum of all medium peculiarities, in particular, the medlum's 
porosity, mlcroroughness of individual grains, physlcochemical properties of the soil, etc. 
[6]. 

The value ~ = 1 for a porous medium was established by comparison of Eq. (9) written 
for a Newtonlan liquid with the known Darcy law of subsurface hydraulics. 

Thus, in laminar filtration of a non-Newtonian liquid, the following relationships are 
obtained for A and Re*: 

= 8 (i0) 
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Generalized function A - f(Re*): i) i - 
8/Re*; 2) A = 0.1882/V~"~' .  

TABLE i. Values of Coefficient 
A as Calculated by Empirical 
Formula of [3] and Eq. (14) 

Re" [3] Eq. (14) 

290 
625 

1 2 5 0  

3750 
7500 

12500 

0.01187 
O, 00959 
O, 00790 
O. 00600 
O, 00505 
0,0o454 

0,01140 
O, 00939 
O, 00796 
O, 00602 
0,00510 
O, 00444 

( n )  

For the case of filtration of a Newtonian liquid, the number Re is determined by the 
formula 

Re = pum |.Fk, ~l. (12) 

Equation (10) differs from Minskli's formula in the value of the constant. 

To verify the applicability of the above generalization, experiments were performed 
with various non-Newtonian liquids (lubricating oil, a lubricating oil-brlght stock mixture, 
and petroleum samples of various origins from Azerbaldzhan) in models of a round cylindrical 
tube, a porous medium, and a plane sllt. Results are shown in Fig. I. Also shown there are 
experimental data of Abdulvagabov [10]and Trebln[ll] on filtration of Newtonian liquids, and 
data of Hedstrem, Metzner, and Reed [3] for flow of Bingham and power liquids in a tube. 

Thus, the proposed generalization makes possible determination of hydraulic losses in 
the laminar flow regime for any theologically stationary liquid in media of various geomet- 
ries (including porous media). 

It has been established that the critical value of Reynolds number Re* for motion of 
rheologlcally stationary liquids in tubes of various geometries (exluding a porous medium) is 
approximately equal to 290. 

An attempt was made to generalize the resistance law for rheologlcally stationary 
liquids in turbulent flow by replacement of the actual velocity profile by a parabolic one 
(the Prandtl method). 

The resistance law for turbulent flow of a Newtonlan liquid in a round tube then has 
the form 

14 



n--! _,2 2 2n  

~, 9"- ;  [In, 1) (n __ 2)] "- - I /B "+i [ pumd 1 "+1" �9 
! 

(13) 

The experimental studies of Schiller and Nikuradze [12, 13] show that Eq. (13) may be 
generalized to tubes of noncircular cross section by substitution of the hydraulic radius 
for the conventional one. Moreover, as in the case of laminar flow, upon replacement of 
by the effective viscosity Eq. (13) may also be used for non-Newtonlan liquids. Assuming 
the validity of the Blasius law (n = */7, B = 8.74), from Eq. (13) we obtain the approximate 
relationship 

= 0 . 1 8 8 2 ~ R e * .  
(14) 

Equation (14) is generalized to the case of turbulent flow of any rheologically sta- 
tionary liquid in media of various cross sections for Reynolds number variation over the 
range Re* = 290-12,500. 

To verify the applicability of Eq. (14) for non-Newtonian liquids, the experimental 
data of Metzner and Reed [3] were processed, with the results shown in Table i. As is evid- 
ent from the table, the I values determined by Eq. (14) and the empirical formula of [3] 
differ insignificantly (by not more than 4%). 

The generalized function I = f(Re*) for rheologlcally stationary liquids is shown in 
Fig. 2. 

It should be noted that resistance law (14) should not be used for nonsmoothtubes and 
porous media, since in turbulent motion the coefficient I will depend both 0n Re* and on 
relative roughness of the medium. 

In [14] a similar resistance law analogous to the Blaslus formula, obtained by Mini- 
gazimov (formula III.6) was presented. That formula was obtained by processing of experi- 
mental data on turbulent flow of non-Newtonian systems. In his formula the normal viscosity 
in the Reynolds number is replaced by a viscosity obtained in the Poiseuille portion of the 
rheological curve. 

NOTATION 

Xw, mean shear stress over perimeter; Yw, mean velocity gradient; AP, pressure drop; Z, 
longitudinal dimension; F, cross-sectional area; Tw(Z) , shear stress, variable over perim- 
eter; z, wetted perimeter of section; Rh, hydraulic radius; ds, differential perimeter arc; 
Q, flow rate of liquid; Io, polar moment of inertia; io, polar radius of inertia; ~, dynamic 
viscosity of Newtonian liquid; Um, mean velocity (filtration rate); ~, form coefficient; Xo, 
limiting shear stress; ~, structural viscosity; m, n, exponents; I, hydraulic resistance 
coefficient; Re, Reynolds number for motion (filtration) of Newtonlan liquid; Re', general- 
ized Reynolds number for Newtonlan liquids; Re*, modified Reynolds number for rheologically 
stationary liquids; ~, generalized plasticity parameter; 0, density; B, abstract number; k, 
permeability coefficient; ml, porosity. 
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INTENSIFICATION OF CONVECTIVE HEAT EXCHANGE IN ANOMALOUSLY 

VISCOUS MEDIA BY THE APPLICATION OF ARTIFICIAL PERIODIC ROUGHNESS 

Yu. G. Nazmeev UDC 536.242.001.5 

The results of an experimental investigation of the intensification of convective 
heat exchange in the flow of anomalously viscous liquids in pipes with artificial 
periodic roughness are presented. An estimate is made of the thermohydrodynamic 
efficiency of the application of this means of intensification to anomalously vis- 
cous media. 

One of the most critical problems facing industry is to increase the unit output and 
productivity of equipment, particularly heat exchangers. The most effective way of solving 
this problem is to develop and investigate methods for the intensification of convective 
heat exchange. 

A well-known means of intensification of heat exchange is to use pipes having an arti- 
ficial periodic roughness in the form of different kinds of projections or diaphragms on the 
inner surface of the pipe as the working channels of the heat-exchange apparatus. However, 
all the test data available in the literature on the intensification of heat exchange in this 
way pertain to the case of flow of viscous liquids in channels [1-5]. In this connection, 
it is known [i] that the given method intensifies the heat exchange in viscous liquids by an 
average of 2.5 times. It is also known [6] that a change in the shape of the profile of a 
projection when the spacing and height are unchanged has a weak effect on the change in heat 
transfer while it affects to a considerably greater extent the change in the coefficient of 
hydraulic resistance, which decreases in proportion to the decrease in the coefficient of 
profile drag. For example, the lowest hydraulic losses, at a practically equal gain in heat 
transfer, are achieved in the case of smoothly profiled diaphragms by rolling the outer sur- 
face of pipes with rollers. The technology for making such pipes is very simple and the cost 
of the rolling is a few percent of the cost of a smooth pipe [i]. Moreover, it becomes pos- 
slble to intensify heat transfer to the outer surface of the pipe also. 

Unfortunately, experimental data on the intensification of heat exchange by the indic- 
ated means are presently absent for the flow of anomalously viscous liquids. 

Since the use of pipes with artificial periodic roughness in the form of rolled smoothly 
profiled diaphragms yields a considerable gain in heat transfer in the flow of viscous 

TABLE i. Thermophysical Characteristics of Polymer Solutions 

Aqueoussoludon o ~/m s ]cp:10~ J/kg-deg ~ W/m.deg 

1020 3.607 [ 0,674 
1080 3. -989 ! O, 476 

PVA, 9'/o 
Na CMC, 8.5% 
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